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Review Article 
Some Transport Phenomena in Classical Liquids and 
Neutron Scattering 

KAR L- E R I K LA RSSO N 
Royal Institute of Technology, S- 10044 Stockholm, Sweden 

(Rereitled December 22, 1982) 

Our knowledge in liquid physics and particularly in the field of non-equilibrium phenomena 
has increased enormously during the last two decades. The reasons are two-fold: (a) the applica- 
tion of the slow neutron inelastic scattering technique to the liquid state has supplied us with 
very valuable fundamental data and has stimulated theoretical work and (b) the application of 
molecular dynamics computations to problems of liquid dynamics has profoundly deepened 
our understanding of fundamental dynamical quantities. The combination of the two ways of 
research has shown how to approach the solution of classical questions: For instance to what 
small wave length domain may we apply the normal hydrodynamical equations? And when 
these equations cease to exist what would be a good theoretical continuation into the short 
wave length domain? The modern techniques have shown that normal hydrodynamics is 
useful down to wave lengths approximately ten atomic distances. Thereafter kinetic effects of 
atomic nature take over. It  is also shown that periodic waves are transmitted through insulator 
liquids like argon and neon to wave lengths of the abovementioned order whereas periodic 
waves with wave lengths of order two atomic distances are transmitted through liquid metals 
like rubidium and lead. The questions are associated with the possible collective motions in a 
fluid. 

A similar question has to  do with selfmotion: It is known that Einsteins relation 7 = 201 
describing the time evolution of the diffusive motion of a particle in a fluid is an asymptotic 
relation valid for times long compared to  for instance atomic or molecular collision times. But 
to what shorter length of time is the relation valid? Neutron scattering studies combined with 
molecular dynamics computations and kinetic theory indicates that the range of validity of the 
Einstein relation extends down to times of order (6-8). lo-” s corresponding to root-mean- 
square displacements of order 0.5 A. This conclusion seems to  be valid within an accuracy of 
approximately 20%. 

INTRODUCTION 

In the year of 1982 fifty years have passed since the detection of the neutron. 
This particle has contributed to science and technology in the most spectac- 
ular way. Specially the field of slow neutron scattering has contributed pro- 
foundly to our knowledge of atomic ordering and dynamics. Lattice dynamics 
obtained a revival by use of the neutron scattering technique round 1955-60. 
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274 K.-E. LARSSON 

Our knowledge of the quantum liquids He11 and He3 depends to a large and 
important degree on neutron scattering results collected from 1957 to 
present day. 

Before the application of this fruitful technique to the field of classical 
liquids the theory of liquid dynamics was rudimentary. During the last 25 
years the neutron scattering results on simple classical liquids has been the 
firm ground upon which new models and theories were built. Due to the 
fact that the application of computer science in molecular dynamics happens 
to be useful to simulate atomic motions in liquids within the same space and 
time region within which neutrons give information, the coupling neutron 
scattering-molecular dynamics has been most fruitful. In this review a 
simplified and short account is given of the broad field of liquid dynamics as 
seen from the horizon of a neutron experimentalist who has taken part in the 
whole development of neutron scattering since 1955. 

1 Fluctuations and neutrons 

The atoms and molecules in matter are never a t  rest. This has been observed 
for at least 100 years and formed the basis for the kinetic theory of gases 
constructed by Boltzmann. It was possible in the past to derive a number of 
transport constants and other macroscopic properties of solids, liquids and 
gases on the basis of the firm belief that atoms are moving. Such derived 
properties were diffusion coefficients, viscosity coefficients, specific heats etc. 
Some other constants were associated with equilibrium properties of the 
body under observation it may be a solid, liquid or gas. 

The existence of deviations from equilibrium - fluctuations -was also 
known early. In some cases these fluctuations give spectacular results in the 
form of coherent motions like phonons in solids or elementary excitations 
in quantum liquids. Theoretically the understanding of lattice vibrations is 
good and also there is a well developed theory for dilute gases. In between 
are the states of dense fluids-classical liquids and dense gases- which until 
recently were not well understood microscopically. Macroscopically the 
hydrodynamic equations were used to describe the long wave length and 
low frequency dynamics of fluids. But there was no bridge over to the micro- 
scopic dynamics on the atomic level. 

In general i t  was always difficult to observe the fluctuations. Scattering 
experiments offered a possibility. For instance light scattering allows a study 
of the Rayleigh and Brillouin scattering intensity in liquids. 

With the event of neutron scattering the situation was completely changed. 
This was first noted by van Hove 1954.' The reason that the neutron differs 
from a light quantum or an X-ray quantum is its mass. According to the 
de Broglie relation a neutron of wave length of order atomic spacing in 
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TABLE I 

Energy ( E )  wave length (A) Typical wave length 
Particle relation and energy 
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h 
I . = -  I. = I . S A  E - 0.025eV 

J2mE 
Neutron 

hc 
I 

hc 
I 

E = -  I -  I A  E -  104eV X-ray 

E = -  L - ~ O O O A  E - l e V  Light quantum 

In dense matter: 
Atomic separation - 1 A 
Vibrational energies - 0.025 eV 

condensed matter has an energy corresponding to typical thermal vibration 
energies, k ,  T. This is not the case with X-rays or light quanta according to 
the scheme in Table I. 

Therefore in a scattering experiment a fairly complete mapping in energy, 
hw, and in momentum, h ~ ,  can be performed with neutrons. With X-rays 
only the spectra in momentum space are easily observable and with light 
only energy spectra for very small momentum transfers as indicated in the 
approximate scheme in Table 11. 

With the present neutron spectroscopic instruments and their normal 
resolutions this makes the neutron capable of observing fluctuations within 

TABLE I1 

Scattering experiments: 
k, ,  k = ingoing and scattered wave vectors resp. 

2 x  2rr k = - k  - 
I '  O - -  10 

k - k, = K = scattering vector 

0 = scattering angle 

E,,, - Ei, = hw 
~~~ ~ 

Observation possibilities : 

Particle 

Neutron K - IA-' fiw - 0.025 eV 

Light quantum K - A - I  fiw - 1 0 - ~  e v  

Important wave vector ( K )  and energy (hw) range 

X-ray K - I A  
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216 K.-E. LARSSON 

a time range lo - ' '  to 10-l4s and a space range from 10 to 0.1 A. These are 
exactly the interesting ranges of time and space during which important 
fluctuations in many cases relax within condensed systems, or during which 
the single binary collisions or many body collisions occur in a gas of different 
density. In certain extreme experimental arrangements such as back scatter- 
ing arrangements and in small angle scattering apparatus other ranges in 
space and time are possible to reach but are of smaller interest in our present 
context. 

Van Hove also showed that from the statistical mechanics point of view 
it is a correlation function G(r, t )  which tells about the life of fluctuation. 
Classically G(r, t )  describes the probability of finding an atom at r and t if 
there was an (other or same) atom at the origin at t = 0. In the neutron 
scattering process it is not space and time we learn about. Rather the neutron 
carries information about momentum and energy transferred to it by the 
fluctuations. 

What is directly measured in the scattering experiment is the doubly 
differential cross section 

where the nuclear properties of the scatterer enter only into the value of the 
scattering length a,, which is equal to acoh for coherent scattering and ainc for 
incoherent scattering. k and k o  are the values of the outgoing and ingoing 
wave vectors respectively, and the factor k / k ,  is a measure of the ratio of 
scattered to ingoing flux in scattering. All the physical properties of the 
atomic many body problem involved in the scattering process are hidden in 
the scattering function S ( K ,  w), in which h~ and Ao are the momentum and . 
energy changes in the scattering process respectively. As shown by van Hove 
the relation between S(K, a) and G(r, t) is 

This is for the case of coherent scatterer for which collective motions are 
revealed in the scattering process. When the nuclear properties are such that 
only incoherent scattering occurs a similar formula holds with S(K, a) 
replaced by &(K, W )  and C(r, t )  replaced by Gs(r, t )  the index s denoting that 
in this case only self motion of a single scattering atom is observed. 

As indicated in Figure 1 van Hove gave a very clear picture of the physical 
interpretation of G(r, t )  and Gs(r, 2). In general G(r, t )  is described as a sum 

(3) 
where Gd(r, t )  describes the dynamical correlation between pairs of particles 
in the many-body medium and Gd(r, 0) is the well known static pair correla- 
tion function g(r). As time goes on all of the functions smears out such that 

W, 0 = GAr, t>  + GAT, t ) ,  
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FIGURE 1 
Gs(r,  t )  and Gd(r,  r ) .  respectively. Here exemplified at t = 0 and at a later time t = t , .  

Van Hoves picture of the time evolution of the self and pair correlation functions 

G(r, t )  tends to 1 for very large times. This means that the fluctuation is 
completely relaxed. 

Particularly for the self motion asymptotic forms for time intervals long 
and short compared to the elementary interaction times between atoms or 
molecules in the medium, let us say a fluid, were formulated by Vineyard’ 
namely the simple diffusion approximation valid as t + co 

where the Gaussian approximation for the spreading out of a particle in 
space is invoked and x’( t )  is the mean square deviation discussed by Einstein 

This gives for &(K, 0) the frequently used formula 

__ 

- 
x2( t )  = 2Dt. ( 5 )  

1 DK’ 
S s ( K ,  0) = - 

n(DK2)’ + 0’ 
valid only for long times corresponding to small a. For very short times, 
t + 0, the force action between particles may be neglected and a description 
of free motion always valid in a very dilute gas is approached, namely 

leading to 
7 = +(uot)’ (7) 
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21 8 K.-E. LARSSON 

where u i  = k,  Tim, symbols having their usual meanings. These two limit- 
ing forms have found a frequent use in the analysis of neutron scattering 
experiments. 

Returning to the introductory remarks regarding the wide range of energy 
and momentum changes in the scattering process covered by the neutron, 
it so happens that the main part of the dispersion relations for phonons in 
solids fall within the neutron window (Figure 2a). Similarly the neutron in 
principle makes it possible to find out if collective modes similar to the 

FIGURE 2 Approximate extension of neutron window (shaded area) in K and w within 
which scattered neutrons are able to carry information about dynamical processes: a) in a 
periodic solid structure, where phonons can be observed within the most important wave 
vector-energy region and b) in a liquid or dense gas, where it was already earlier known that 
at very long wave lengths ( -  lo00 A) and low frequencies ( -  Thz) a light scattering 
picture shows the two typical features the quasielastic Raylcigh peak and the inelastic Brillouin 
peak in which the scattered quantum is shifted by w1 = +cK,. where c is the sound velocity. 
The neutron may show to what higher frequency domain (vz - 1 Thz, 1, - 6 A) this principal 
picture can be pushed. Available area approximately given by 10 > K, > 0.01 k', 0 < 
J w z I  < lOI4 rad/s. 
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NEUTRON SCATTERING AND TRANSPORT 219 

hydrodynamic modes of motion in a liquid or gas persists for smaller wave 
lengths and higher frequences (Figure 2b). Furthermore the possibilities to 
study the effects of collisions at different densities in the system under in- 
vestigation are very good (Figure 3). If we now concentrate on fluid systems 
it is obvious that neutron scattering offers a chance to investigate the range of 
validity of hydrodynamics down in space and time towards atomic magni- 
tudes. For distances smaller than or for the order of atomic distances, and 
times of order time between collisions, we expect kinetic effects to take over. 
Neutrons have offered an ideal tool to investigate such effects. The main 
difficulty is to understand and interpret in detail the rich information carried 
by the scattered neutron. 

In the following chapters a review is presented of the evolution of our 
understanding of fluid dynamics as it has evolved during the era of neutron 

1 
Dilute gas 
n 0-3 < 0.1 

i’ 
2 

Critical density 
n 0-3- 0.3 

3 
High density 
n ~3 > 0.8 

4.. I’ 

I’ 

FIGURE 3 Applying the uncertainty relation, ApAx 2 h, lo the magnitudes involved in a 
neutron scattering process, one finds if Ap = h~ that Ax 2 I/K. One may say that the neutron 
acts like a microscope. with an aperture I/K. Within this aperture the neutron observes different 
phenomena depending upon (a) density of the system given by nu3, where n = number density 
and (I is an effective atomic diameter, which together determine the mean free path (I) between 
collisions and (b) upon the aperture, Ax, given by I / K .  The critical parameter is Ax/I  ,. 1/d. 
1, 2, etc. are molecules. In a dilute gas (case 1) the neutron observes free flight, in a medium 
dense gas (case 2) the neutron may observe a binary collision and parts of free flights and in a 
dense gas (case 3) it observes a collective collision. 
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280 K.-E. LARSSON 

inelastic scattering from about 1957-58 to 1982, a period of 25 years. It is 
shown how the neutron measurements together with the new use of com- 
puters during the period in the form of molecular dynamics opened parti- 
cularly the field of liquids to firmer theory construction. Before 1958 very 
little was known on the atomic theory of liquids dynamics. A very great 
number of research workers contributed to the development of ideas, 
theories and experiments during these 25 years. In what follows only a few 
of all these papers will be cited namely those which according to the opinion 
of the author in some respect were fundamental to our understanding or 
which were of pioneering importance. 

2 

Van Hoves theoretical work was known but maybe not fully appreciated 
before 1960. If we now concentrate on fluid systems what have we learnt 
during the two decades that passed since then? Let us first begin with the 
period up to about 1968-1970. The thinking during the years, 1959 to 1968, 
was dominated rather much by an early observation. In 1958 studies of 
phonon processes in an aluminium single crystal at elevated temperatures 
were performed by Larsson et aL3 Similar studies were performed by Brock- 
house on a lead ~ r y s t a l . ~  From these studies a broadening of the single 
phonon resonance lines was observed (Figure 4). Multiphonon contributions 
were also studied and compared to phonon expansion formulas. Inter- 
preting this broadening as an effect of damping the mean life of the phonon 
could be calculated from the uncertainty relation. It was found (Figure 5 )  
that the mean life time and the mean free paths determined from the width 
observation was of order 1.5 times the phonon wave length near the melting 
point. 

The next step was to take a polycrystalline   ample.^ In that case one would 
expect scattering to occur only between certain limits determined in principle 
by the numbers t + q and T - q, where t is a reciprocal lattice vector and q 
is a phonon wave vector. A gap between ingoing neutron energy and the 
scattered intensity may be created by the existence of (1) a reciprocal lattice 
and (2) a phonon spectrum with a dispersion relation (Figure 6). The experi- 
mental result on the polycrystalline sample taken near the melting point 
confirms the prediction, valid under the experimental circumstances selected, 
i.e. no Bragg peak falling under the ingoing spectrum range (Figure 7a). 

The interesting question is now what happens if we let the sample melt. 
The experiment was performed and the result was   tart ling.^ (Figure 7b). The 
difference between the liquid spectrum and the polycrystalline one is minimal. 
It was known that the spectrum from the poly-crystal was created by damped 
phonons plus a multiphonon contribution and it suggests itself to ask whether 

Early observations and models for liquid dynamics 
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600 r loo0 uoo f800 MKI m ILOO wo 
Time o f  flight I J M .  Time d f/i9htp~c. 

(a) 
FIGURE 4 a) Single phonon resonance line plus the multi-phonon spectrum observed for a 
particular orientation of a single aluminium crystal at temperatures from 293 to 923°K. Melting 
point is at 933°K. The ingoing neutron wave length is - 4 A - 5 meV or at a time-of-flight of 
3000 p. The wave length and frequency of the observed phonon group is - 6 A and - 5 Thz. 
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7-82 K.-E. LARSSON 

Crystal temperature T “K 
FIGURE 4 
phonon groups (after K.  E. Larsson, U. Dahlborg and S. Holmryd, 1960). 

b) Observed phonon line broadening as a function of temperature for two different 

such damped excitations exist also in the liquid phase. The question was 
raised: Do collective excitations exist in a liquid at the high frequencies and 
the short wave lengths we are now considering, i.e. 10” - lOl3Hz and 
3- 10 A resp.? 

No theories existed that could be of value in this situation. From the hydro- 
dynamic equations Brillouin peaks were expected at much smaller frequencies 
and wave lengths in the macroscopic domain involving “volume elements” 
instead of single atoms. Already in 1958 Vineyard’ had proposed his con- 
volution approximation to describe the scattering function S ( K ,  0). To 
construct S ( K ,  w )  Vineyard used the formula G(r, t )  = GS(rr t )  + Gd(r, t )  and 
for Gd(r, t )  he used the ansatz 

Gd(rr t )  = g(r‘)Gs(r, - r‘) dr‘, (9) i 
which leads to the scattering function 

S ( K ,  w> = S ( K ) S , ( K ,  01, (10) 

where S(K) is the liquid static structure factor. What the basic ansatz amounts 
to is to assume that the correlation hole round any atom moves rigidly 
with the atom. There is no collective motion possible. Also the existence of 
the central atom given by Gs(r, t )  is not taken into account. Such a model 
could not possibly be used to understand the data. 

It was speculated that the main fault with Vineyards idea was that occurring 
at small r’s. The motion of the distinct atom is not influenced by the presence 
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NEUTRON SCATTERING A N D  TRANSPORT 

t 6 

1 1  o Trans verse vibration 

I - 
700 BOO 9 

C y s  la/ temperature T "K 

283 c 
CrystoI temperature T "K 

FIGURE 5 Phonon mean life time and mean free paths derived from the observed widths 
of the phonon groups (after K.  E. Larsson, U. Dahlborg and S .  Holmryd, 1960). 
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284 K.-E. LARSSON 

FIGURE 6 a) Scattering vector diagram for single crystal. r is reciprocal lattice vector and 
q phonon wave vector. The simultaneous relations to be fulfilled are k - k, = q + r;  
(h2/2m)(k2 - k;) = +ko and o = 4 9 ) .  The scattering pattern is assumed to contain one 
phonon line at K~ or energy El. Ingoing wave vector values is K, and neutron energy E,.  b) To 
obtain the allowed intensity region scattered from a poly crystal we rotate the figure a) round 
the point 0 and let y be oriented parallel and anti-parallel to T. We then obtain allowed intensity 
to be observed in a range T + y > K > I - q (shaded region). 

of the atom at the origin at  t = 0. Singwi' formulated the mathematics of 
the idea that one should assume the almost extreme opposite: assume that 
within our fluctuating liquid the atoms surrounding the atom a t  the origin 
perform a motion highly correlated with the central one (Figure 8). Their 
motion was described as phonon motion within a sphere of coherence of 
radius R. Outside this sphere the atoms may be assumed to  move as described 
in the convolution approximation for instance in a diffusive manner with due 
regard taken to the structure of the liquid. There is thus a correction to the 
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15 10 7 5 3 2 1.5 i w -io%d /s 
FIGURE 7 a) Neutron intensity scattered from a single crystal (. . . . .) and from poly- 
crystalline sample (xxxx) of aluminium at 903°K. Melting point at  933°K. Ingoing neutron 
spectrum at lo00 p / m  and longer flight times. Intensity gap from 1000 p / m  to about 650 ps/m 
caused by the lattice periodicity. 

l"t 

i 
f ..I 

I ." 
X .  
I- 

FIGURE 7 b) Neutron intensity scattered from a poly-crystalline sample (xxxx) at 903°K 
and from a liquid sample at 950°K (. . . .). Both observations performed at constant angle of 
observation, 60". and with berylliumfiltered neutrons ingoing (after K. E. Larsson, U. Dahlborg 
and D. Jovic (1965)). 
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- 
- 

Elastic Diffusive 
behavior behavior 

FIGURE 8 The basic physics of atomic motion in simple liquids as guessed by Singwi in 
the early 1960’s on basis of neutron scattering results. R is a range of coherence of motion round 
each atom including a few neighbour rings within which elastic behaviour dominates. 

Vineyard approximation such that the scattering function is now 

S ( K ,  o) = S(K)S,(K, o) + H ( K ,  o) = S J K ,  o) S ( K )  + - - L(R,  K ,  q)  [ :(T I 
Here H or L are correction factors and q is the quasi-phonon wave number 
belonging to frequency w. c is sound velocity. 

Even more drastically solid-like models for liquid atomic motion were 
invented by Egelstaff.’ We notice in passing that the Singwi ansatz has much 
in common with the physical ideas behind the so called mean field approxi- 
mation or with visco-elastic theories developed later. According to the mean 
field theory the atoms round a certain atom moves in concert-but notice: 
without any special care being taken to the central atom and its possible 
strong interaction with neighbours for instance in a binary collision. 

Such models as Singwis and Egelstaffs were tested against new and more 
extensive measurements on two widely different liquids namely liquid lead’ 
and liquid argon.8 When we now turn to the comparison between experi- 
ments and models we notice that these new experiments were performed at 
higher flux reactors. The used neutron fluxes increased from 3-10” to 
I O l 4  n/cmZ s as exemplified by the Stockholm reactor, R I ,  on the one 
hand with flux 10I2 and the Idaho Falls materials testing reactor (MTR) or 
the Studsvik reactor R2 in Sweden in the flux range of 1014 n/cm2.s. on the 
other hand. The first liquid aluminium studies were made with a flux of 
10l2 and cold neutrons whereas the subsequent studies on liquid lead and 
liquid argon were made with the l O I 4  flux level and in addition to cold 
neutrons, thermal neutrons were also used. As a result of the higher available 
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NEUTRON SCATTERING AND TRANSPORT 287 

flux a more complete mapping of S(K, w) could be made such that S(rc, w )  
could be studied for constant K or constant o over the entire range of values 
ofthese variables as the situation was in the 1960:ies. This means that S(K, o) 
could be studied over that range of K for which the liquid structure factor 
S(K) = S(K, 0) d o  has a value close to one. Thus very small rc-values, for 
which S(K) < 1, were excluded from study. 

If one inspects data from these days, - 1965, one may do many interesting 
observations. If we have a look at corrected lead data by Randolph and 
Singwi' we see first of all that no inelastic peaks are observed in these plots 
of the differential cross section at constant angle of observation (Figure 9). 
No collective modes show up as peaks within the rc-region investigated. If 
there exist such modes they must be thoroughly smeared out like in a poly- 
crystal. One reasoned that in order to compare to models like the Singwi 
model valid for single phonon processes one would have to subtract from 
the observed pattern the effect of multiphonon scattering. And now for the 
first time one also could begin to correct in an approximative way for 
multiple scattering in the sample container. Such corrections were attempted 
already in the end of the 1950's by Brockhouse and Pope.'' The importance 
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FIGURE 9 Partial differential cross section for neutron scattering from liquid lead at 
625°K as a function of scatterred-neutron wave length at various constant angles of observation 
(after P. D. Randolph and K .  S. Singwi (1966)). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
8
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



288 K.-E. LARSSON 

of this correction did not become clear until much later in the 1970's. First 
when these two corrections were performed could a comparison to theoretical 
models be made. One observed that the convolution approximation is bad 
and that the Singwi model fits a little better. The critical parameter is the 
Singwi correction factor. This can be calculated and it can be directly ex- 
tracted from the experiment by comparison with the convolution model. 
Having established what R-value is most reasonable one finds that to each 
constant w only one value of q fits the data and one in such a way obtained 
a dispersion relation w = Mq). 

1 

I 

q 

FIGURE 10 The main peak at K~ of the liquid structure factor S(K) was considered as a 
generalized Bragg peak. This allows a construction of a corresponding generalized Brillouin 
zone picture with a second zone centered at K~ which plays the role of a reciprocal lattice vector T. 
In such a picture it is logic 10 refer the derived o(p) values (pairs of o and q belonging together) 
to this second generalized Brillouin zone. 

But now we come to a critical point. From what point should the disper- 
sion relation be drawn? In a solid with its regular atomic arrangement in a 
periodic lattice we may construct Brillouin zones such that when a phonon 
gets a wave number or  wave vector larger than 5/2  it is referred to the next 
zone, in the center of which we have a Bragg peak. So the phonons are 
referred to the closest Bragg reflection (compare Figure 6). In the spirit of 
this model and remembering the similarity between Singwis approach and 
the dynamics in a solid (solid-like model) one considers the first peak of the 
liquid structure factor as a generalized Bragg peak (Figure 10). Therefore 
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Liquid Lead 352.C 

Experimental results 

C = 1.77 x lo5 cm/s 
Solid Lead , Longitudinal Branches 

FIGURE I 1  The dispersion curve for li uid lead derived by Randolph and Singwi from the 
data of Figure 9. Observe that K = 2 . 2 1 - l  is considered as a Bragg point in a reciprocal 
lattice (after Randolph and Singwi, 1966). 

the derived ( ~ 4 )  were plotted round the x-value of this peak, 2.2 A-'  
(Figure 11). This result represents the ultimate in this era of believing in a 
solid-like behaviour of liquid dynamics. Observe that a periodic dispersion 
relation is assumed even without having seen an inelastic peak. On the other 
hand we have the knowledge that the high temperature polycrystalline and 
liquid energy spectra looked very similar. The dispersion curve must there- 
fore have related to an average phonon in the liquid. g(r) has only one strong 
peak corresponding to a sphere of nearest neighbours and the following 
spheres are rather badly defined. The lack of clear periodicity reflects in the 
relatively undefined and broad main peak in the structure factor S(x) as 
compared to the sharp Bragg plots from the solid. It is therefore to be 
expected that the highest frequency excitations, if they exist, are strongly 
damped, perhaps within a distance of order two atomic distances. The im- 
portant feature in the dynamical events may even be the very first collision, 
the binary event. In such a case it is hard to speak about single excitations as 
periodic motions. Such questions remained to be answered. 
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3 Indications of a new era 

Round 1960 or soon thereafter computers started their impact on the field of 
liquid theory and on treatment and interpretation of neutron scattering 
data. Until the middle of 1960’s and even much longer-it is fair to say even 
today- the neutron scattering studies are plagued by the phenomenon of 
multiple scattering. Even if the sample container is constructed with the aim 
to reduce such effects, for instance by use of strongly absorbing spacers, the 
multiple scattering is the main hindrance from extending neutron scattering 
studies to such regions in (K, o)-space which are of importance for finding 
single excitations, i.e. the small K-region. This is also a region of great interest 
for structure factor determinations and the attempts to derive an effective 
pair potential from this structure factor. Other regions which remain un- 
determined are the large w-regions where also S(K, o) takes on small values. 
This has so far for instance prevented experimental determinations of the 
fourth frequency moment of the scattering function which contains informa- 
tion on the force between atoms. However, during the 1970’s the art of 
computing multiple scattering from known cross sections and compositions 
and shapes of sample container and sample have become feasible. A break- 
through in this respect was created by Copley and first applied to scattering 
studies of liquid rubidium’ ’ (1974). Earlier good correction work was 
performed for liquid argon” and later very careful multiple scattering 
calculations were made in several studies (liquid lead,27 bismuth3’). The 
method of subtracting the multiple scattering component requires a reliable 
absolute determination of the cross section. The earlierfactor method suffers 
from the weakness of being model dependent.I2 A new’philosophy in 
shaping the sample containers also contributes in reducing multiple 
scattering. 

The computers also, have revolutionized the field in another way. During 
the 1970s it has become possible to compute even the most involved mathe- 
matical expressions describing theoretical values of the scattering functions. 
Examples are offered by modern mode-coupling theories. Similarly by the 
aid of the computer accurate comparisons between theory and experiment 
have become feasible even if very extended data collections are obtained. 

Still another important contribution from computer, from the theoretical 
point of view, is the possibility to perform molecular dynamics studies. By 
solving Newtons equations of motion for a very large number of particles, 
say 1O00, in a box moving under the action of a known potential it is possible 
to describe positions as function of time and thereby to find the van Hove 
correlation functions or their Fourier transforms under the given premises. 
Of equal or even greater importance is that other magnitudes such as velocity 
correlation functions and their memory functions, current correlation func- 
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NEUTRON SCATTERING AND TRANSPORT 29 I 

tions etc. may be found from such studies. On the whole, features which are 
not directly observable by neutron scattering may be studied in detail.l3-I5 

To understand why molecular dynamics has become so valuable it is 
useful to consider a few basic theoretical developments describing deep- 
going statistical mechanics It was mentioned above that the 
self motion, GS(r, t )  if often approximated by a Gaussian function of width 
?(t) .  It may be shown that 

x2( t )  = 2 dt'(t - t ')(~,(0)~,(t ')),  (12) - ld 
where (u,(O)o,(t)) is the velocity auto correlation function. The scattering 
function measured in a neutron scattering experiment &(K, w) is obviously a 
very complex function of the velocity correlation function hidden in the 
width ?(t). In order to obtain ?( t )  from such a measurement one would 
have to take the Fourier inverse to obtain F s ( q  t ) .  It has been shown that 
the Gaussian assumption in itself is not quite correct just in the time domain 
round 5.10- l 3  to 5-10-'2s, where neutrons are most effective to observe 
atomic motions. A non-Gaussian correction should -at least sometimes - 
be made. It is thus still more difficult to obtain information on (u,(O)u,(t)) 
from a neutron scattering experiment. Furthermore it is only from an obser- 
vation of S s ( ~ ,  w)  that one could derive ?(t). Incoherently scattering liquids 
do  practically not exist (vanadium the only exception). Mixtures of coherent 
and incoherent exist and several metals are pure coherent scatterers. By use 
of isotope separated samples it is possible to obtain S s ( ~ ,  w) if-say-one isotope 
scatters mainly coherently and an isotope mixture may be realized such that 
incoherent scattering dominates. Such an example is A-36 (coherent) and 
A-40 + A-36 (mainly incoherent)." Argon is the only insulator substance 
for which S ~ K ,  w )  was experimenta!!y determined in an objection free way 
simulataneously as S ( K ,  w )  was determined. Similarly a study" of liquid 
nickel was performed using a mixture of nickel-58 and nickel-62. In this 
way parts of the separated scattering surfaces for a liquid metal were found. 

There is a great deal of interest in (u,(O)u,(t)) because deeper developments 
in statistical non equilibrium mechanics deal with it. 
The Langevin diffusion equation is we11 known 

M-= dv(t) - t v ( t )  + R(t) 
dt 

It is, however, to be considered as an equation of motion for a large sphere 
moving in a fluid of smaller particles, like the simple diffusion equation 
analogue (Einsteins idea). The internal friction coefficient and the diffusion 
coefficient, D, are connected via the relation, ( = k , T / M D .  When we de- 
crease the dimension of the sphere down to atomic sizes and consider the 
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292 K.-E. LARSSON 

corresponding short times, we have to generalize the equation. The friction 
constant is transformed into a time dependent transport coefficient 
(</A4 = y + dr), which has been named a memory function (discussed 
already by Landau). A simple memory function equation results for 
(v(wo)>: 

d 
- (v(O)v(t)) = - dt 

y ( t  - t') (v(r')v(O)) dt' 

It leads to the well known results of Langevin diffusion for a b-function form 
of the memory and to an oscillating behaviour for a constant memory 
(Figure 12a). By this description we have in fact brought into consideration 
the possible visco-elastic behaviour of a liquid (Figure 12b). This seems 
quite promising as a working hypothesis remembering the slight solid-like 
behaviour of some liquids. The first thoughts in this direction were presented 
by Maxwell and may be described as  follow^:'^ when a disturbance in a 
fluid is slow compared to its natural relaxation time it responds to the dis- 
turbance with viscous flow and if it is very rapid it responds more or less 
like a solid with elastic vibrations. The memory function is thus a magnitude 
of greatest interest. It can in principle be derived from molecular dynamics 
data by numerical solution of the integrodifferential equation for 
(~*(O>UX(~)). 

i c  oscillotions if r=const  

t 

(a) 

t 

(b) 

FIGURE 12 a) Principal shapes of memory function leading to the two extreme cases of 
motion namely (1) the random Langevin diffusion process if y ( f )  = $ ( I )  (= no memory at all) 
and (2) elastic vibrations if y ( f )  = y (= a memory that remains constant forever). b) Memory 
function for a realistic case of a liquid showing visco-elastic atomic dynamics, which contains 
ingredients of both the extreme cases. 
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Ar 84.97.K 

293 

- 2  0 - I  0 0 10 2 .0  3 .0  011 

FRE PUE NCY SHIFT 

FIGURE 13 rimentally obtained light scattering picture by scattering laser light of 
wave length 5145 r f r o m  liquid argon at 85°K. A central Rayleigh peak and the two displaced 
Brilloin peaks are clearly seen (after P. A. Fleury and J.  P. Boon, 1969). 

Ex 

A further theoretical development along these lines has taken place from 
1963 (Kadanoff & Martin).” Zwanzig” and co-workers have systematically 
developed the scheme of generalized hydrodynamics. The reason for these 
efforts is simple: Any theory describing liquid dynamics should in the limit 
of long wave lengths (small K) and low frequencies (small o) transform into 
the predictions of the hydrodynamic equations, which describe conservation 
of mass, momentum and energy in fluid motion. For a long wave length 
radiation like light these equations predict that in a scattering process three 
intensity peaks should be observed: the central Rayleigh and the shifted 
Brillouin peaks. Such spectra have been observed (Figure 13). The widths of 
the peaks, i.e. the damping of the fluctuations, are determined by 
x = K / p , C ,  = the thermal diffusivity for the central peak and by 

= $[v, + (y - l ) ~ ]  for the side peaks. v I  = longitudinal kinematic 
viscosity and K = coefficient of thermal conductivity. pov, = $qs + qs, 
where qs = shear and qB = bulk viscosity. y = C,/C, = specific heat ratio. 
One should remember that the fluid is considered as a continuous medium; 
it is locally homogenous and isotropic, viscous and thermally conducting. 
The transport coefficients are considered as constant parameters. 

The normal hydrodynamic description will break down when the fluctua- 
tions considered have wave lengths of order atomic distances and corre- 
sponding high frequencies. We expect that the viscous behaviour should be 
replaced by a visco-elastic one. The transformation of the macroscopic 
hydrodynamics to a microscopic generalized hydrodynamics is performed 
by use of the sum rules. A useful way of illustrating how the transform is 
performed is to consider the longitudinal current correlation function. 

Our main aim is to investigate what happens to the collective motions in 
the fluid known as sound waves when the wave length is gradually decreased 
down to atomic dimensions. In for instance light scattering these show up 
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294 K.-E. LARSSON 

as the Brillouin doublet peaks occurring for o = &cad& where cad = the 
adiabatic sound velocity. If such peaks exist also for wave lengths of atomic 
dimensions they should be of a nature related to the phonons in solids, which 
were observed to exist up to the melting point of the solid in a strongly 
damped form. If temperature fluctuations are neglected the longitudinal 
part of the linearized Navier-Stokes equation is 

a 1 
- j l r ,  t = - -[Vp(r, t ) l  + v,V2j,(r, t )]  
at M 

where j&, t )  is the longitudinal current and p(r, t )  the pressure. Instead of 
considering the current itself it is of interest for the present purposes to con- 
consider the current correlation or rather its spatial Fourier transform 
J&, t )  = (j'- ,.(t)jL(t)). This current correlation satisfies the equation16 

K 2  f dt'J,(ic, t') - v , K ~ J , ( K ,  t), (16) 
a 
- J l ( ~ ,  t )  = -- 
at n M X T  0 

where zT = the isothermal compressibility. The solution of this equation 
results in a double peaked structure corresponding to the Brillouin peaks 
but with the sound velocity given by the isothermal one due to the neglect 
of thermal fluctuations. It may be shown that the application of the zeroth 
frequency moment of JI(ic, o), which is simply = v i  = k ,  TIM, requires that 
the isothermal compressibility zT be replaced by S(ic)/nk, T.  The static 
structure factor S ( K )  is thus introduced. n is the number density. This means 
that the constant compressibility factor is replaced by a wave length de- 
pendent one, a non-local compressibility factor. It may, however, be shown 
that the second frequency moment of J, (K,  o), which is given below as &K), 

is not fulfilled even with this shift of meaning of the compressibility factor. 
In a phenomenological fashion it is therefore guessed that the constant 
viscosity term v1 must be replaced by a space and time dependent one. Or in 
our formulation: v,  -, &K, t ) .  Such a transformation of the viscosity to u 
viscosity function is in the spirit of uisco-elastic theory.2' With these trans- 
formations the Navier-Stokes equation for the current correlation is changed 
to 

a 
at S(K)  0 
- J J I ( K ,  t )  = - - (Kuo)2  fdt'J,(K, t') - K~ J: dt'4,(K, t - t ' ) J r ( K ,  t') (17) 

The application of the second frequency moment of J , (K ,  o)-a static 
quantity-determines not the full viscosity function I $ ~ ( K ,  t )  but rather its 
initial value +,(K, 0), which comes out as 
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NEUTRON SCATTERING AND TRANSPORT 295 

It is observed that the force between pairs of atoms is thus introduced via 
w:(K), which is given by 

Here g(r)  is the static pair correlation function and u(r) is the potential be- 
tween a pair of atoms. 

It should, however, be stressed that the physics ofthe reluxutipn process on 
the atomic scale is now hidden in the time dependence ofr$(lc, t).  The importance 
of these various steps is that the normal mathematical form of the linearized 
Navier-Stokes equation is now formally applicable down to the atomic 
space and time scale. We have not learnt anything new about the relaxation 
processes themselves and as a matter of fact it remains to be demonstrated 
that the basic physics of the atomic dynamics is correctly described by this 
framework. The predictions from this model should for instance be in 
harmony with the findings from kinetic theory. We return to this question 
later. Before leaving the transformation to generalized hydrodynamics it 
should be noticed that the equation arrived at can be written 

ld (20) 
a 
at 
- J 1 ( ~ ,  t )  = - dt' &(K,  t - t')JI(lc, t') 

with the memory function K [ ( K ,  t )  given by 

One has arrived at a form familiar from the Mori theory and applied to the 
velocity auto correlation function above. 

A typical example of application of this theory and combination with 
molecular dynamics studies is the work by Ailawadi, Rahman and ZwanzigZ3 
(1971). J(K, t )  is computed by molecular dynamics for a Lennard-Jones 
liquid (argonlike). It is Fourier transformed to give J(K, w), which is used for 
comparison with the calculated J(K, w). A Gaussian form was assumed for 
r $ ( ~ ,  t )  namely exp[ - ntz/4zZ(~)]. Part of the physics is now hidden in 7 ( ~ )  

and part in the choice of a Gaussian form. T was determined by fitting to the 
molecular dynamics data (Figure 14). The result is that a reasonable fit is 
obtained between the molecular dynamics results and the prediction from 
generalized hydrodynamics. It is, however, to be noticed that this fit is 
obtained at the cost of producing a Kdependent relaxation time 7. The 
physical meaning of T ( K )  remains unexplained. A considerably more de- 
tailed study was performed by Levesque et ~ 1 . ' ~  These authors showed that 
the modest fit produced by a simple Gaussian memory function could be 
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FIGURE 14 In the top part of this figure is shown the longitudinal current correlation 
function obtained from molecular dynamics calculations (filled circles). The full lines represent 
the same quantity as calculated from generalized hydrodynamics with a Gaussian form of the 
memory function and with the width parameter I ( K ) .  The derived shape of T ( K )  is shown as the 
bottom part of the figure (from N. K. Ailawadi, A. Rahman and R. Zwanzig, 1971). 

improved to a more nearly perfect fit-considering the statistical errors in the 
molecular dynamics calculations - by introducing a much more complex 
memory function. The important conclusion reached by these authors is 
that a double relaxation time is necessary to produce a perfect fit, namely a 
fast relaxing component plus a slower decaying one. 

In this way theory took the molecular dynamics study as the “truth” with 
which to compare theory for testing. It is quite common that molecular 
dynamics and theory tend to form a couple from which the “truth” is ex- 
tracted. It is, however, imperative that the molecular dynamics results are 
tested now and then against pure experimental results. In the particular 
case of a Lennard-Jones fluid the molecular dynamics have been tested 
against modern and accurate liquid argon data, have shown agreement and 
should be safe. Using such theories or other similar ones involving the idea 
of a visco-elastic nature of short time liquid dynamics, it was possible in the 
period around 1970 to generate S(K, o) scattering surfaces useful as visual 
guidest4 (Figure 15). 

It is, however, to be noticed that (1) the physics of Z(K) or other combina- 
tions of parameters remains unexplained. Also (2) it was not proved that the 
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LIQUID ARGON 
T = 94'K 

0 5 
w (10" rod/s)  

LIQUID ARGON 
T =94 'K  

6 

-0.5 0.0 0.5 

w rad I s )  

FIGURE 15 The coherent scattering function calculated on the basis of visco-elastic theory 
for liquid argon at 94°K. The model is characteristic in that it is arranged such that it gives the 
correct hydrodynamic limit as well as the free particle limit when K -+ co. The first three even 
frequency moments are used to fix the parameters of the model. The top part illustrates the 
predicted short range of existcnce'of Brilloin peaks in the small K domain, whereas the bottom 
part shows a structure-dominated scattering function in the large K domain (after Sears, 1970). 
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298 K.-E. LARSSON 

physical concepts behind the hydrodynamic framework of formulas is valid 
at these short wave-lengths. Furthermore (3) it is known that a considerable 
part of the atomic motion seen in the short wave length region (K > K ~ )  

comes from the self motion and there is no such notion as self motion in 
hydrodynamics. 

4 Important experimental results 

During the years 1972 to 1982 several accurate and relatively complete 
experimental mappings of scattering functions were made. The first was a 
careful scattering study on liquid argon. There was a first study performed 
in Studsvik, Sweden, by Skold and Larsson,* published 1967, followed by 
the most complete one performed at the MTR in Idaho Falls 1971 by 
Skold et a/.'' (published 1972). It is quite instructive to compare these two 
studies in which the first one (1967) interpreted data according to various 
phenomenological models invoking solid-like behaviour of the liquid. In 
the studies published five years later the generalized hydrodynamics and 
other visco-elastic theories had replaced the earlier models. In the latter 
study A-36 was used separately such that S(K,  o) and S s ( ~ ,  o) could be 
separated. The characteristic features of this study is the use of such ingoing 
neutron energies, (15 and 20 meV), that a rather wide K-range from 1 to 
4.4 A -  and relatively complete w-range is observed. The main reason that 
the study was not carried to smaller K-values was the difficulty with low 
intensity and high relative multiple scattering contribution. The magnitude 
of the calculated multiple scattering shows the importance of performing it 
correctly (Figure 16). An integration of the intensity in w-direction gives 
S(K).  A comparison with the separately studied2' S ( K )  shows how the 
difficulties pile up at small K-values (Figure 17). The final mapping of S ( K ,  o) 
as well as S s ( ~ ,  o) shows that there are no peaks due to collective excitations 
in this Lennard-Jones system within the investigated K-w-domain (Figure 
18). Various models such as the generalized hydrodynamics model were com- 
pared to these data with modest success. On the other hand the agreement 
between the molecular dynamics data of Rahman and Verlet and the experi- 
ment is good. We defer the detailed comparison to theory until we have 
discussed more recent theories. Let us just remember the absence of single 
excitations at least down to 1 kl. Molecular dynamics studies of Leveque 
et a l l4  indicate that such features are expected only up to about K - 0.3 A-  '. 

A study of interest in order to find experimental evidence for single 
excitations in liquids is the German work performed at Jiilich on fluid neon 
by Bell et published 1975. These experiments were performed on high 
pressure neon gas at various temperatures between 75" and 45°K and 
pressures between 120 and a few atmospheres. The density varied between 
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FIGURE 16 Double differential scattering cross section from neutron scattering on liquid 
argon at 85°K at three constant angles of observation, two different ingoing neutron energies 
and for the coherent scatterer A-36 and a mixture of A-36 plus A-40 showing both coherent 
and incoherent contributions. The dots give the experimental results and the solid curves the 
calculated multiple scattering contributions. The latter ones ones are seen to be very important 
for large energy transfers (K-values) (after K. Skold, J. M. Rowe, G. Ostrowski and P. D. 
Randolph. 1972). 

0.98 and 0.34 g/cm3. The scattering experiments were performed at a triple 
axis spectrometer in the constant K mode of operation. By performing the 
observation at very small angles of observations, 3-7 degrees, and for ingoing 
energy round 2 MeV these researchworkers were able to observe S(K,  o) 
for 0.06 < K < 0.18 A-'. Due to the very small ingoing energy even doubly 
scattered neutrons cannot reach i c  = 2.1 A-', which is the value of K at 
which the peak of the structure factor occurs. Therefore data are not corrected 
for multiple scattering. At these small momentum transfers a clearly visible 
three-peak structure is observed (Figure 19). Above K - 0.15 A-' this 
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I 

1 

FIGURE 17 The scattering function S(K, w) for liquid argon at 85°K integrated over o for 
constant K giving S(K) compared to a separately measured structure factor S(K) (-), 
(xxxx) = integrated result before multiple scattering correction, (. . . .) = same result after 
multiple scattering correction. Observe the large correction at small K-values (after K.  Skold, 
J .  M. Rowe, G.  Ostrowski and P. D. Randolph, 1972). 

structure disappears. This seems to be in agreement with what is expected 
for liquid argon. The observed data could be described with the normal 
hydrodynamic formulas involving constant transport coefficients. This 
means that the hydrodynamic behaviour in this case ceases at wave lengths 
of order 2n/u A = 40 A. In the case of the argon studies it was derived that 
x 2 ( t )  shows a rather clear diffusion behaviour. This means that if there are 
any collective modes in argon they should appear in a K-region where 
hydrodynamics is valid. In the shorter wave length domain the “grainy” 
atomic structure dominates. Apparently the structure given by the Lennard- 
Jones potential does not permit existence of collective high frequency modes. 

Except argon and neon there are two liquid metals for which carefully 
corrected sets of data are presented and which are of interest because they 
show a behaviour different from Lxnnard-Jones liquids. These are liquid 
rubidium” and liquid lead.27 

To start with rubidium” this study was made at CP-5 in Argonne by 
Copley and Rowe in time-of-flight experiments using the ingoing neutron 
energies 4.94 and 33.9 meV. The cylindrical sample container of aluminium 

- 
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FIGURE 18 The experimentally determined scattering function S(K, o) for liquid argon at 
85°K for 1 .c K < 4.4 8, showing no signs of side peaks even for the smallest K-values investi- 
gated. Compare theoretical calculations illustrated in Figure 15 lower part (after K. Skold, 
J.  M. Rowe, G.  Ostrowski and P. D. Randolph, 1972). 

had neutron absorbing spacers (boron nitride). Temperature 315°K. A 
careful multiple scattering correction was made. The normalization of data 
was difficult at small tc-values and was made absolute by comparison to the 
known second frequency moment. As input in the multiple scattering calcula- 
tion was used a molecular dynamics calculated scattering function for 
rubidium. There were also some other difficulties with low energy data: an 
extra peak which was simply subtracted. The final result is, however, inter- 
esting. For the first time true collective high frequency excitations are 
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FIGURE 19 Neutron spectra scattered from fluid neon at a density of 0.48 g c m - 3  at 70°K. 
Ingoing neutron energy as low as 2.29 and 2.1 I meV. Rayleigh and Brilloin peaks are observed 
for K < 0.15 & I .  Compare general similarity with calculations for liquid argon illustrated in 
figure IS, top part (after B. Bell, H.  Moeller-Wenghoffer. A. Kollmar, R. Stockmeyer, T. 
Springer and H.  Stiller, 1975). 
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observed even at  values corresponding to 2/3 of I C ~  = 1.5 A- at which 
K-value the main peak of the static structure factor is observed (Figure 20a). 
This allows a dispersion relation to be traced out (Figure 20b). It indeed 
shows the structure typical for a solid. It is of interest to notice that S(K, w) 
even in a range 1.25 < K < 2.50 A- shows tendencies to a double structure. 
Above K = 3 A- ’  the usual bellshaped structureless form is observed. 
The structure in the middle K-region 1.25 < K < 2.50 A-’ is even better 

W (10” rad / sl 
(a) 

FIGURE 20 a) The experimentally determined scattering function for liquid rubidium at 
320°K (melting point at 31 1.6”K) showing side peaks up to K = 1 A -  I .  Peak of structure factor 
atK = 1 .5A-I .  
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0 

0 

FIGURE 20 b) Dispersion relation O(K) for the collective modes of motion given by the side 
peaks in (a). The solid line corresponds to velocity of sound, c , ~  (o = c,,K). Observe that the 
curve seems to show symmetry round ~ ~ / 2  (after J .  R .  D. Copley and J .  M. Rowe, 1974). 

born out in the shape of the intermediate scattering function. The density- 
density correlations die out first rapidly and then considerably more slowly, 
except at K~ = 1.5 A-', where the same correlations show a very slow 
decay corresponding to the relatively stable configuration giving the peak 
at I C ~  (compare Figure 32). 

We finally come to the observations performed on liquid lead,27 T = 
623°K. These scattering studies were mainly performed at Studsvik, Sweden, 
by 0. Sdderstrom, but a complementary study was also made at the Laue- 
Langevin Institute in Grenoble in cooperation between Soderstrom, Copley, 
Dorner and Suck. The main mapping of the coherent scattering function at 
Studsvik was made by use of a time-of-flight spectrometer with 33 and 
47 meV ingoing neutron energies. With this combination of energies a 
mapping for 1 < K < 6.8 A -  could be made. In this case K~ = 2.2 A- '. A 
thinwalled aluminium sample container of plate type was used. Very careful 
multiple scattering studies were made. The hydrodynamic model of Ailawadi, 
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Rahman and ZwanzigZ3 was used as input scattering function in this calcula- 
tion. In the studies performed at Grenoble a triple axis crystal spectrometer 
was used in the constant K mode of operation. The K-range covered in this 
study was 0.4 c K -= 1.6 A-'. Ingoing neutron energy was 40.1 meV. 
Scattering angles down to 2 degrees could be used in this particular arrange- 
ment. The sample container was equipped with gadolinium-containing 
spacers giving a strong reduction in multiple scattering. No correction for 
multiple scattering was made in this case mainly because absolute deter- 
mination of cross section is impossible. The Grenoble studies show again a 
scattering function with a triple peak structure as in rubidium although the 
Brillouin ,peaks are less intense. The features are however visible even above 
rc0/2 = 1.1 A-'  (Figure 21a). From the peak positions it was possible to 
derive a dispersion relation. But before we present these data we shall 
compare with the time-of-flight data from Studsvik (Figure 21b). Even in 
these data a three-peak structure is observed up to about K - 1.3 A -  ' which 
is above ~ ~ / 2 .  The features are still there up to K = 1.5 A-' .  When these 
data are combined, a dispersion relation results which extends from K = 0.3 
to K = 1.4 A- (Figure 22). These peaks correspond to wavelengths shorter 
than 20 A and therefore are outside the hydrodynamic domain. It should 
however be noted that these peaks are very broad corresponding to a large 
damping of the corresponding collective excitations. It is also observed that 
above the main peak in the static structure factor there are no signs of 
structure in the dynamic structure factor. In passing we notice an important 
experimental fact. In Figure 21b the dashed lines give the calculated multiple 
scattering on an absolute scale, the calculation being based on a generalized 
hydrodynamics model,23 given in the figure as solid lines. The difficulty to 
observe the small K part of S ( K ,  o) is illustrated by the increasing importance 
of the multiple scattering component as the K-value decreases: the observed 
peak value of S(K,  o) for o = 0 is 0.5 at K = 2 A- whereas it is only 0.003 
at K = 1 A-'. The same peak value of the multiple scattering contribution 
stays approximately constant at 0.02 over this K-scale. 

To sum up, the two investigated insulators show no high frequency 
collective modes outside the range of validity of normal hydrodynamics 
whereas the two metals do. Regarding the older attempts to understand the 
physics of these collective processes the result is meagre. To illustrate the 
rather dramatic difference between the insulators and metals the region of 
existence of collective motions and the range of correlations given by g(r)  
compared to shortest wave length of excitations is given in Figure 23a for 
neon and 23b for lead. 

For larger K-values the atomic motions should approach free atom motion 
which is not described by hydrodynamics. Self-motions is in fact approached 
as K increases as is visible in S(K) .  S ( K )  oscillates round 1 which may be 
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FIGURE 21 a) Experimentally observed and unnormalized scattering function obtained 
from liquid lead at 623°K using 40. I meV ingoing neutron energy in a crystal spectrometer at 
Grenoble. Sidepeaks are visible at K = 1.1 ,  which corresponds to ~ ~ / 2  (after 0. Soderstrom, 
J.  R .  D. Copley, J .  8.  Suck and B. Dorner, 1980). 
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FIGURE 21 b) Experimentally observed and normalized scattering function from liquid 
lead at 623°K using 33.2 and 47.7 meV ingoing neutron energy in a time-of-flight spectrometer 
at Studsvik, Sweden. Sidepeaks are visible up to K = 1.4A-'. ( K ~  = 2.2A-I) .  Dashed lines 
give the multiple scattering contribution (after 0. Soderstrorn, 1980). 
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FIGURE 22 Dispersion relation, o ( K ) ,  for liquid lead at  623°K derived from observed side 
peaks. Also here one notices a tendency for O ( K )  to  look symmetric round K = ~ ~ / 2  (=  I .  1 A - '  
in the present case). The solid line corresponds to the velocity of sound (after 0. Soderstrom, 
1980). 

/ 1 2 3 L 5 6 7  
Xrn x (A") 
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FIGURE 23 The liquid structure factors S ( K )  and the pair correlation functions g ( r )  for an 
insulator, liquid neon, (a) and for a metal liquid lead (b) showing similar gross features. The 
shortest wave length of collective excitations transmitted over a distance larger than this wave 
Icngth, ~ F / K , .  is however dramatically different being of order lor, for neon (argon) and of 
order r ,  for lead (rubidium). Shaded area in S ( K )  gives region within which excitations are 
transmitted, ro is the position of the main peak ofg(r) .  
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FIGURE 24 Observed full width at half maximum, AEmeV, of the dynamic scattering 
function. S(K, o), for liquid lead at two temperatures T = 623" @ o o o )  and T = 1173°K (xxxx). 
The corresponding simple diffusion predictions are given as full lines (after 0. Soderstrom, 
U .  Dahlborg, and M. Davidovic, 1982). 

considered as the w-integral of S J K ,  0). If one inspects the full width of half 
maximum (FWHM) of the scattering function it is found that within limits 
of experimental accuracy of about 10% for lead it oscillates round a half- 
width value for self motion predicted by simple diffusion3' (Figure 24). 
What this picture demonstrates is that when K > I C ~  the main atomic motion 
revealed in S(K, w )  is self motion. The effect mentioned is not too surprising 
from one point of view namely because simple diffusion is associated with 
the long time limit or o -+ 0. On the other hand the large K-values do not 
go well together with the simple diffusion (Eq. ( 5 )  and (6)). The oscillations 
round 2hDtc2 may be considered as a kind of corrections to the self motion. 
What is their nature? What can we learn about the self-diffusion process 
from such observations? We shall return to these questions in a later chapter. 

On the other hand when K < rc0 the line width deviates strongly from 
simple diffusion. This could be expected if that region is considered as a 
transition region to the low K-region where true collective excitations exist 
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Ar 

FIGURE 25 
and for the liquid metal rubidium. 

Interaction pair potentials lor the Lennard-Jones and insulator liquid argon 

in the hydrodynamic sense because these have nothing to do  with the self 
motion. We shall return to these questions later on. 

We now have to raise the question: why do we see collective high frequency 
modes in rubidium and in lead but not in argon and neon. Let us compare 
the assumed pair potentials acting between for instance argon atoms and 
rubidium atoms, respectively. The rubidium potential appears more para- 
bolic and therefore in itself should give rise to some kind of harmonic 
vibrations (Figure 25). The Lennard-Jones potential is strongly non- 
parabolic and should give rise to strong anharmonicity, i.e. damping. Also 
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the shape of the repulsive part varies as l/r4 for rubidium and l/rI2 for argon. 
The question is which of these effects are important. Probably both are as 
we will see in the later part of this analysis. 

Molecular dynamics studies by Haan, Mountain, Hsu and Rahman28 
seem to indicate that it is enough to use the repulsive part of the pair potential 
to reproduce the inelastic peaks in S(K,O) .  They found that they could 
reproduce the rubidium dispersion relation and also obtained a shorter 
dispersion region for argon in agreement with earlier results. This seems to 
indicate that the repulsive core of the potential determines when collective 
modes can exist. If this limit also determines the limit for hydrodynamics is 
an open question. The newer kinetic theories shines some light on these 
problems. 

5 Kinetic theories and applications 

During the 1970’s a new approach to the problem of atomic motions in 
fluids has been made on the molecular level. This is the kinetic approach in 
which the problem is attacked from a side earlier used only for low density 
fluids, where single atomic collision events are dominating. This is a region 
in which Boltzmanns transport theory is applicable. In the early 1920’s 
Enskog at the Royal Institute of Technology in Stockholm succeeded in 
extending the validity of Boltzmanns theory to moderately dense gases. But 
still in Enskogs theory the velocity auto correlation function decays exponen- 
tially as in simple Langevin diffusion. It has been shown that to come further 
along these lines one has to consider the possible recollisions of atoms. Such 
recollisions change in nature with the density. This was shown in a famous 
molecular dynamics study by Alder, Gass and Wainwright” 1970. It was 
also shown by these research workers and others that (u,(O)u,(t)) for long 
times decays as t - 3 / 2  and not as an exponential. The reason for the deviation 
from the Enskog behaviour at lower densities is the so called ring collisions, 
let us say of smoke ring type. At higher densities and shorter wave lengths 
the cage effect is dominating. In kinetic theory it is natural to start out from 
the binary collision and to try to include corrections involving the recollision 
effects. 

The development of kinetic theory2’ for a dense medium is by nature very 
complex as not only two particle correlations but also higher order correla- 
tions must be c0nsidered.t The full phase space distribution function is con- 
sidered and the fluctuations in the form of deviations from the mean, which 

t As a good example of what can be achieved by use of kinetic theory for a dense fluid the 
series of papers published by Sjogren and Sjo1ander29*30 is mentioned here. Particularly the 
last series of papersz9 on kinetic theory of self-motion in monoatomic liquids and the cor- 
responding paper on kinetic theory of current fluctuations in simple classical liquids with 
numerical results are of importance in the present connection. 
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is the equilibrium distribution, are defined. The equations of motion for the 
correlations between deviations at different phase space points are set up. 

The complicated collision integrals that always enter a Boltzmann equation 
type of treatment occurs also here but the form of the equations is recast 
such that all the complicated couplings between various modes of motion 
are combined into a memory function in the Mori type of formalism. If this 
memory function can be calculated, then for instance the self motion and 
therefore &(K,  w)  can be described. 

Also for the pair correlation function has it been possible to derive a 
similar memory function. It turns out that the scattering function in this 
kinetic approximation contains terms which can be identified as corrections 
to the lower approximation theories produced earlier. If we set the convolu- 
tion approximation as the first one, then the mean field approximation is the 
second and the kinetic theory is the third. The kinetic theory gives the 
correct hydrodynamic limits for transport functions and also the right short 
time limit namely the free gas model (Eq. 8). It also turns out that the self 
motion plays a very important role in both the final expression for the co- 
herent scattering function directly and in the many mode coupling integrals 
that appear in the memory function. A particularly important role is played 
by the part of the memory function that describes the binary collision : this 
was expected as this is the primary driving agent in the dynamical process. 
So far a theoretical description of the binary collision event is missing. As 
the slower decaying part of the memory function is found to start out as t4, 
it is argued that the faster decaying part connected to terms of order t2 may 
be approximated by a Gaussian ansatz expl - t 2 / z 2 ( ~ ) I .  But as distinguished 
from for instance the ansatz for the memory function used in the framework 
of generalized hydrodynamics mentioned earlier, the parameter T ( K )  is not 
guessed. It is determined from an expansion of the exact formal expression 
of the memory function. It is instructive to know that the memory function 
can be expressed as T(z) = rB(z )  + rR(z) where the first part describes the 
rapidly decaying memory due to the fast binary collisions and the second 
part contains the intermediate and long time recollisions of ring type. 
Hydrodynamic modes are connected to intermediate and long times. In- 
stead of making a self consistent calculation of a scattering function one 
assumes reasonable approximate expressions for the various coupling 
integrals containing the correlation functions F s ( ~ ,  t ) ,  F ( K ,  t), C,(K, t) and 
C,(K, t )  which are the only correlation functions that are considered. F J K ,  t)  
and F ( K ,  t )  are intermediate scattering functions of S s ( ~ ,  w )  and S(K,  w), 
whereas C!(K, t )  and C,(K,  t )  are the intermediate expressions for longitudinal 
and transverse current correlation functions. 

The crucial parameter in shaping the steep part rB(z )  of the memory 
function is the relaxation time 7 ( ~ )  similar for self motion and pair motion. 
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It contains the effects of the static structure round any atom such that a 
simple binary collision between two particles in a vacuum interacting with 
the bare potential is renormalized due to presence of neighbours in the given 
static configuration. This decreases the value of z-’  in the present kinetic 
theory by some 35 %. As seen from the Figures 26a and b a further decrease 
of z- ’  by some 25% resulting in a slight broadening of rB(t) is enough to 
create. an almost perfect agreement between the calculated velocity auto 
correlation function and the computed one using molecular dynamics. The 
authors29 (Sjogren in J. Phys. C, 13, (1980)) believe that in this phenomeno- 
logical way they have taken the other rapid dynarnical renormalizations into 
account. So with other words: as a result of a binary collision a certain 
number of near neighours undergo rapid replacements. This rapid adjustment 
to the new situation amongst very near neighbours may be thought of as being 
produced by  both repulsive and attractive forces. This conclusion may be 
drawn from a comparison of Sjogrens results described above with the velo- 
city auto correlations computed by Haan, Mountain, Hsu and RahmanZ8 
cited above.‘As seen from their results for rubidium (Figure 27b) concerning 
the velocity auto correlation function obtained with only the repulsive part 
of the potential active (full curve) and the one obtained using the full potential 
(dashed curve), the difference between the two is just of the same nature as 
obtained by Sjogren from the small adjustment of the binary collision part 
of the memory function (Figure 27a). The rapid readjustments of near neigh- 
bours has a clear effect on vital parts of the velocity auto correlation function 
creating more pronounced oscillations-or if we like to use an old-fashioned 
language - creating a more solid-like behaviour. 

The long tail of r(t), rR(t), is created by effects of coupling between self 
motion and density fluctuations, self motion and transversal and longitudinal 
currents, respectively. 

Theoretical results similar to the one for liquid rubidium described above 
were obtained for liquid argon. It is, however, apparent that agreement 
between kinetic theory prediction and molecular dynamics results is not 
quite so perfect for argon. SjogrenZ9 speculated that the origin of this dis- 
agreement may be the steep part of the potential. In the case of argon it falls 
off as r-l’  and it could be expected that the pair collision is more violent. In 
such a case the reaction back on the surrounding may be stronger such that 
additional modes should have to be included in the description of the 
couplings. 

To demonstrate to what degree the kinetic theory in the present state of 
development is able to describe the physics of the short wave length “Brillouin 
peaks” in a metal we consider the case of liquid rubidium. This was the first 
case for which such collective modes were observed in neutron scattering. 
Furthermore a molecular dynamics calculation also exists which may be 
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FIGURE 28 Dynamic scattering function S ( K ,  o) versus o calculated from kinetic theory 
and molecular dynamics (. * - a). a )  (- - - -) only binary collisions included in memory functions. 
(: . . .) gives scattering function when also certain ring collision terms describing coupling 
between self-motion and density fluctuations are included. b) (-)gives final kinetic theory 
prediction whenall coupling terms are included in the ring collision part of the memory function 
(after L. Sjogren, 1980). 

used for comparison with theory. Including various components of the 
memory functions r(z) for self motion and TXz) for the pair motion, Sjogrenz9 
was able to show quite clearly how the various features of the observed or 
computed S(K, o) are built up (Figure 28a). It is of interest to notice that if 
only the binary part rB(t) is included the inelastic features identified as 
Brillouin peaks are observed. This observation is in accord with the computa- 
tions of Haan, Mountain Hsu and RahmanZ* that the repulsive part of the 
potential plays a dominant role. It should further be noticed that the wave 
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length of these excitations is in a range determined by 0.3 < K < 1.25 A-'. 
The value of ~ , / 2  is 0.75 A- '. Already when the coupling to density modes 
is introduced the scattering function is rather well described. When all the 
terms in the present approximation are included the theoretical reproduction 
of molecular dynamics or measured data is even quantitatively good 
(Figure 28b). 

The real reason why short wave length excitations are absent in argon or 
neon, Brillouin peaks being observed only up to 0.2 a 0.3 A-1 ,  compared 
to ~ , / 2  z 1 A-', is not yet demonstrated clearly. Ohe may speculate that 
the combined effect of the hard repulsive core and the strongly anharmonic 
form of the potential well in the Lennard-Jones case is the reason. The 
molecular dynamics results indicate such a conclusion. 

It is appropriate to state here that the physical guesses performed by the 
early model builders in this field, such as Singwi as discussed above, as a 
matter of fact came quite close to what modern sophisticated kinetic theory 
has found. Round each atom there probably is a little sphere of coherence 
of radius a very few atomic distances within which very rapid readjustments 
occur giving rise to collective motions of a nature not very different from the 
situation prevailing in a solid. The difference is that there is not periodic 
structure in the liquid which can carry a true phonon-like excitation over 
longer distances. This will be damped out and become aperiodic for those 
ic-values where the disordered structure is resolved and dominating, i.e. 
K > u,/2 in the metals investigated so far. The detailed value of K where the 
collective mode is damped out probably depends upon potential shape. 

6 

As discussed in the first chapter of this review the measurements with cold 
neutron inelastic scattering on liquid aluminium and other substances, 
which triggered the new thinking in the field of microscopic theory of liquids, 
seemed to indicate that the scattered spectrum from a solid polycrystalline 
high temperature sample looked similar to the one scattered from a liquid 
sample (Figure 7b). Now we have seen other more complete studies on 
liquid metals such as those on rubidium and lead from which it seems clear 
that propagating collective density fluctuations do not exist in these metals 
above a K-value of about 213 K,. On the other hand in a solid phonons- 
although strongly damped-were shown to exist up to the melting point. 
In order to understand the old study a more careful analysis has to be made.3 

First let us ask for the K-values at which the measurements were made. As 
all time-of-flight studies these were constant angle observations so that both 
K and AO varies along the observation curve in the K-AO plane (here AO is 
used for energy transfer and o to indicate the running energy scale). It is 
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found that the K -  and Am-ranges covered for aluminium at the constant 
scattering angle of 60" are 1.7 < K < 7 A-' and 1 < m < 14 x 10'3rad/s. 
The important K -  (or, equivalently, wave length-) domain ranges from 
slightly below K~ = 2.7 A- ' to high values. Large energy changes are mostly 
observed. We have seen earlier that in corresponding domain the observed 
scattering functions in rubidium and lead are simply very structureless and 
continuously decaying. But along the loci of observation for aluminium the 
K-value varies and we have to look closer into the structural effects, i.e. the 

Fortunately S ( K ,  Am) was determined for liquid aluminium in a molecular 
dynamics study by Ebbsjo, Kinell and Waller" and it was also calculated 
on the basis of the Sjogren-Sjolander theory such that both S(K,  Aw) and 
S s ( ~ ,  Am) as well as S ( K )  were known.33 This means they are known on the 
basis of the assumed pair potential acting between the atoms. Various such 
potentials were tried by Ebbsjo, Kinell and Waller and they applied them 
to a calculation of the dispersion relation of phonons in low temperature 
aluminium from which was learnt that even very different potentials give 
similar predictions of dispersion relations. Also the scattering functions 
derived from the molecular dynamics studies using three different potentials 
show that propagating collective motions in aluminium are probably 
damped out at K-values < 2 / 3 ~ , .  What is then the message of the old 
measurements ? 

In order to solve the problem two steps were taken. First a more reliable 
multiple scattering calculation was made using the molecular dynamics 
data as a scattering kernel. Then this multiple scattering was added to the 
scattering function calculated by Sjogren ( -the molecular dynamics study 
data). Observe that the multiple scattering is added to the theoretical model. 
The experimental data are lejt untouched. The calculated compounded 
spectrum was compared to observation. The agreement was quite reason- 
able.31 

But how can the liquid spectrum be similar to the polycrystalline one? 
To get an answer to this question we have to look into the topology of 
S ( K ,  Am) and into the kinematics of the experiment. It is known that what 
one measures directly in a time-of-flight experiment is not S(K,  Am) but 
rather something proportional to m2 S ( K ,  Am). It is therefore instructive to 
plot the theoretical S ( K ,  Aw) and m2 S ( K ,  Aw) in a three-dimensional plot 
along the locus for the 60" angle of observation (Figure 29). It is seen that 
exactly the double peaked structure observed in the scattered neutron 
spectra is produced: the first peak due to the liquid structure factor S ( K )  and 
the second peak being a time-of-flight artifact. 

However, in order to understand the physics behind the similarity of the 
two spectra from polycrystal and liquid, one has to make a theoretical 

topology Of S ( K ,  0). 
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0 5 1/A 

FJGURE 29 a) Value of scattering function, S(K, AK), for liquid aluminium 950°K from 
kinetic theory along the locus of the 60" angle of observation for beryllium filtered ingoing 
neutrons. Shown is also the structure factor for liquid aluminium. b) Value of w 2  S(K, Am), 
which is the quantity observed in a time-of-flight experiment, for liquid aluminium. Shown is 
also the liquid structure factor (after K. E. Larsson, 1980). 

analysis and penetrate deeper. We have already seen that during the develop- 
ment of theoretical ideas for liquid dynamics three models were stepwise 
adding new and higher approximations to the previous one namely 1) the 
convolution approximation, 2) the mean field approximation and 3) the 
kinetic theory. 

The scattering function from these three approximations was calculated, 
Kerrs expression34 for the mean field case being used and the last one being 
taken from Sjogrens  computation^,^^ and compared to the experimental 
result at 60" angle from 1959. With the kinetic model data normalized to one 
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. .  . .  

Convol .  appr. 
Mean field theory 

. . . .  
_ _ _  
- K i n e t i c  - 1 1 -  
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+ + +  Exp. d a t a  

.. 

FIGURE 30 Calculated values of wz S(K,  wA) for liquid aluminium corresponding to 60" 
angle of observation based on three different degrees of theoretical approximation : convolution 
approximation (. . . .), mean field approximation (- - - -) and kinetic theory (-) compared 
to experimental results (+ + + +). Shown is also the value of w2 S,(K, Aw), which describes 
self motion and corresponds to incoherent scattering. The theoretical models are given on a 
correct scale relative to each other but the kinetic theory is normalized to one point (after 
K .  E. Larsson, 1980). 

experimental point the total result shows (Figure 30) that in fact the various 
approximations describe data better with increasing degree of sophistication. 

In order to further analyze the results from the three theoretical models 
it is profitable to slightly reformulate the expressions for the scattering 
functions, S ( K ,  Am) = 1/71 Re F(K, z = iAw), in the following way. 
The convolution approximation is: 

F ( K ,  z)i = S ( K ) F , ( K ,  2). (22) 
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The mean field a p p r o ~ i m a t i o n ~ ~  is: 

F(K, 212 = m, 4 1  - Cl(K, 4 

F(K, z)3 = F(K, 211 - Cl(K, z )  - C 2 ( K ,  z )  

(23) 

(24) 

The kinetic theory in the present approximation (slightly approximated): 

The functions CI(ic, z) and C&, z) may be considered as correction terms. 
The first, C1(x, z), which brings the convolution to the mean field approxi- 
mation, is to a large degree determined by the static structure factor via the 
direct correlation function. It is a characteristic approximation in mean 
field theory to replace the bare atomic interaction with an average one 
represented by the direct correlation function. There is no distinguished role 
played by a binary collision as driving agent. The second, C2(x,  z) which 
brings the mean field approximation into the kinetic theory approximation 
contains as a dominating term the memory function ~ ' ( I c ,  z) for pair motion. 
A closer inspection of the various formulas reveals the important role 
played by the self motion via &(K, Aw). As seen in Figure 30 the collective 
effects die out very quickly in the mean field approximation for 
Aw > 2 .  1013 rad/s and K > 2 A - 1  such that S(K, Am),,,eantield 4 &(K, Aw). 
This is equivalent to stating that C1&, z) + Fs(rc, z)[S(K)- 1) under these 
conditions. Therefore the scattering function in the highest approximation, 
the kinetic, is mainly determined by 

F(K, ~ ) 3  = S(K)F,(K, Z) - F S ( ~ ,  z)(S(K)-  1) + C~(K, Z) = F,(K, Z) - C~(K, z). 

We remember that C 2 ( ~ ,  z) is dominated by the memory function P(K, z) 
for pair motion. In a separate study Sjodin and Sjolander35 have shown that 
for K > K~ the memory function I-" reduces to I-"*B, its binary collision 
dominated short time behaviour part, represented in the present approxi- 
mation with a Gaussian function of width t ( ~ ) .  We remember from the latest 
study of the memory function by Sjogren29 discussed in the previous chapter 
that the simple two body binary collision 'has to be corrected slightly to 
include other rapid processes in the medium near the self particle. This is 
then the only effect of "damped phonons" that is left in the liquid. To further 
expose the difference between the mean field and the kinetic approximations 
one might plot the factors S(K,  Aw),canfic,d/Ss(ic, Aw) = f ( ~ ,  Aw) and 
S(K,  A W ) ~ ~ " , ~ ~ / S ~ ( K ,  Am) = g ( K ,  Am) in a three dimensional plot (Figure 31). 
It is seen that the collective effects in the kinetic case show up as oscillations 
in Am and extend further out in Aw. But the effects are only small corrections 
to &(K, Aw) for the present case that K > K ~ .  As we have seen in earlier 
chapters the situation is altogether different when K < rc0. The collective 
phenomena then tend to dominate, which corresponds to the fact that 
S(K) 4 1 such that S(K, A@) is widely different from &(K, Aw). The reason 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
8
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



322 

FIGURE 31 Ratio S ( K ,  wAJ/S,(K, wA) for liquid aluminium. S,(K. oA) is obtained in the 
gaussian approximation. Eq. (4). and using Eq. (12) to calculate x* ( t ) .  The velocity correlation 
function is obtained from a molecular dynamics study.’l S(K, oA) is calculated (a) on the basis 
of mean field theory (ratio = f(~, oA)) and (b) on kinetic theory (ratio = g(K, ma)). Shown is 
also the appropriate liquid structure factor (after K. E. Larsson, 1980). 
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that S ( K )  e 1 is that 
+ Q  

S(K,  Aw) d(Aw) = S ~ K ,  Am) d(Aw) J: Q) 1, 
+ I, Ss(K9 Am) d(Aw) 

S ( K )  = 

+a, 

in which the two last terms almost cancel each other for K < K'. 

It is easy to show that there exists a strong similarity between this modern 
and very complex theory and the old phenomenological model by Singwi. 
We remember that Singwi assumed that round each atom in a liquid there 
is a range of coherence, R, within which elastic vibrations occur for a very 
short time, < lO-''s; outside this range diffusion guided by the liquid 
static structure occurs. In mathematical shape this prediction of scattering 
function very much looks like the one derived above from kinetic theory. 
Both forms contains a correction factor to the convolution approximation. 
It may be shown that the two correction terms related to H ( K ,  w )  in Eq. (1 1 )  
and C 2 ( ~ ,  z) in Eq. (24) are of the same shape if a R-value is selected that 
best describes data.3' The two ideas contain similar physics. The R-value 
giving best fit is 17 A indicating that quite a few neighbours to the central 
atom should be engaged in a coherent motion. But clearly at these short 
wave lengths-large K-values-the damping due to static disorder is so 
strong that no inelastic peaks are formed in S ( K ,  Am). 

The fact that &(K, w )  (here w is again used instead of Am for energy 
transfer) plays a central role for K < K' is displayed in many ways. The 
FWHM is found to oscillate round 2 h D ~ '  at least for lead and neraly so for 
argon4' (Figure 24). The structure factor S ( K )  oscillates round one (1). The 
fact that the FWHM of S(K,  w )  oscillates round a half width value of &(K, w)  
accurately given by the simple diffusion expression in the case of lead must 
mean that in this case the phenomenon of selfdiffusion is defined down to 
the very small wave lengths involved ,I - 2 n / ~  - 1 A. Now the self diffusion 
coefficient may be defined by 

Here the diffusion coefficient is considered a transport function (wave 
length dependent). The fact that FWHM oscillates round 2 h D ~ ~  with a 
constant value of D corresponding to its long wave length (static) value and 
shows no experimentally observable tendencies to deviate from it must mean, 
that the t h e  integral over the memory function P ( K ,  t )  is K-independent 
within experimental error. The large absolute values of the widths observed 
at K - 6 A-', which are of order 7 meV for lead, indicate that the main part 
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of the integral is performed for t = T - 6 .  lo-'%. Here we have invoked 
the relation that vr should be of order one. As the diffusion constant is defined 
only for the long time limit, in principle, t -, 03 or w + 0 this observation 
means that the main part of the time integral is obtained already after a 
short time of order 6 - 10- 13s for the case that K > K ~ .  It appears as if the 
intermediate time behaviour of r(t) (ring collision) is of little importance as 
well as the long time behaviour leading to the well known t-3/2-behaviour 
of (u,(O)u,(t)) in this large K domain. It is the rapidly decaying part of r(t)  
which is the dominating factor in building up the diffusion constant. If we 
think of D as defined from Einsteins relation 2 = 2Dt we are led to the 
conclusion that this long time asymptotic formula is valid down to distances 
of order 1 A and times of order 6.10-  13s. 

In the case of liquid rubidium the observed FWHM deviates considerably 
from the simple diffusion expression. As shown by molecular dynamics 
 calculation^^^^^^ the FWHM of S s ( ~ ,  w) oscillates round the simple diffusion 
value with a rather large positive deviation from 2hD~'  just at K-values 
round 3-5 A- '. If this is taken into account it is found that again the observed 
FWHM of S ( K ,  w) oscillates round the FWHM of &(K, w).~' So again we 
see the leading role of S s ( K ,  w) demonstrated. The origin of the large deviation 
of the FWHM of &(K, o) from 2 h D ~ '  has been shown3' to be the dominant 
role played by binary collision effects which are large in this case. In the case 
of liquid argon a similar phenomenon has been observed but of smaller 

We have thus seen that for K < K~ the neutron scattering results on the 
four liquids argon, neon, rubidium and lead have shown us to what degree 
collective excitations of the nature observed in the form of Brillouin peaks 
exists. For K > K~ the observations have shown the collective behaviour to 
appear more or less as a minor correction to self motion. Consequently 
from this K-range we may learn about the self motion and about the rapid 
processes creating the remaining collective features. Finally for K large 
enough the free atom model (Eqs. 7 and 8) should be approached. In a recent 
study3' on high temperature liquid lead (1173°K) it seems that such a limit 
is approached at K-values of order 7 A-  '. The transform from a diffusive to 
a free atom behaviour has, however, not been clarified yet.40 

For K - K~ the structural effects dominate in forming S ( K ,  o) and its 
mintegral S(K) .  This is well displayed in the intermediate scattering function 
F ( K ,  t )  derived from S(K,  w )  by a Fourier inversion. As for instance clearly 
shown for liquid rubidium' ' the function F ( K ,  t) decays first very rapidly 
and then more slowly for K-values of 1.25 A-'  and 2.00 A-' on each side 
of K = K' = 1.50 A- '. At this value of K, F ( K ,  t) decays only slowly showing 
that the atomic configuration round each atom seen at this wave length has 
a considerable stability in time (Figure 32). In contrast atoms are more 
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quickly thrown out from such configuration which correspond to K-values 
of 1.25 and 2.00 A -  ’. 

It is thus fair to say that for S ( K )  considerably larger than one, round K ~ ,  

the structural effects dominate in S ( K ,  w). For S ( K )  < 1 the collective effects 
tend to dominate in S(K, w )  and for S ( K )  - 1 the self motion of atoms is 
dominating S ( K ,  w). 
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